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Abstract

In rocks that are polydeformed an approach which separates faults prior to stress inversion is more appropriate. The
traditional stress inversion approach involving the concept of the best-®t stress tensor, e.g. a tensor which minimises the mis®t

between calculated and measured fault-striae data, often risks computing arti®cial stress tensors that are some form of average
of mixed sets of real stress tensors. A new approach is proposed in which fault data are pre-processed to group the faults on the
basis of their response to all possible orientations and magnitudes of applied stress. A computer method is described which
utilises cluster analysis based on the right-dihedra method to divide dynamically-mixed fault populations to monophase subsets.

This division is based on the ranked similarity coe�cients of each fault pair from the raw data set. The data clusters form
dynamically-homogeneous subsets, which are used for the composite right-dihedra solution. This solution is re-computed for the
reduced stress tensor de®ned by the orientation of principal stress axes and the ratio of their magnitudes. # 1999 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Calcite twin and fault-striae data have been widely

analysed in structural studies since Weiss (1954) and

Turner (1953, 1962) developed techniques to determine

stress axes from calcite e-lamellae (e.g. Rose, 1868;

MuÈ gge, 1883) (Fig. 1) and Carey and Brunier (1974)

devised a method to compute the reduced stress tensor

(sensu Angelier, 1989), based on the stress±slip re-

lationship (Wallace, 1951; Bott, 1959).

Several of these techniques have been devised for

paleostress determination from calcite twin data from

unmetamorphosed, macroscopically undeformed or

very weakly deformed cover rocks (e.g. Turner, 1962;

Nissen, 1964; Spang, 1972; Laurent et al., 1981, 1990;

Dietrich and Song, 1984; P®�ner and Burkhard, 1987;
Lacombe and Laurent, 1996). The usual assumptions
are: (1) twinning in calcite is a deformation mechanism
with no temperature, normal stress and ¯uid pressure
dependence; (2) the yield shear stress value for twin-
ning is a constant; and (3) the stress at the grain scale
is homogeneous. Wenk et al. (1983), Burkhard (1993)
and Lacombe and Laurent (1996) discussed the val-
idity of these assumptions. Several of these techniques
are applied for paleostress analysis in brittle tectonic
environments from measurements of faults and their
slip vectors (e.g. Angelier, 1979, 1984, 1990, 1994;
Etchecopar et al., 1981; Armijo et al., 1982; Gephart
and Forsyth, 1984; Michael, 1984; Reches, 1987;
Gephart, 1990; Hardcastle and Hills, 1991). The ma-
jority of these methods are based on the following
assumptions:

1. Fault slip recorded by the striation or other linear
structures on the fault plane is parallel to the direc-
tion of resolved shear stress on the fault.
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2. Slip on each fault plane is independent of slip on
other fault planes.

3. The controlling stresses are homogeneous.

The validity of these basic assumptions is discussed in
detail by Dupin et al. (1993) and Pollard et al. (1993).

The assumption of stress homogeneity is critical
because the existence of polyphase fault reactivation
and polyphase twin data sets is common. If such data
are analysed by standard paleostress techniques, the
results can form spurious compromise values among
the di�erent actual stress tensors represented in the
data. Under such circumstances, which were numeri-
cally tested on synthetically generated faults by
Nemcok and Lisle (1995), the control of the polyphase
data separation can be lost and the search for the ideal
stress tensor leads to the determination of the ®rst
spurious compromise tensor. This tensor is used as a
criterion for the separation of the ®rst monophase
data set from the whole data set. The remaining data
are used for further separations. The separation of the
polyphase calcite twin data is even more complicated,
because the relationship between displacement and
stress is looser, partly controlled by crystallography
(e.g. Burkhard, 1993).

This paper addresses the issue of analysing poly-
phase data sets and proposes a new separation/stress
inversion computer approach. In order to design this
method to apply also to the calcite twin data, the less
limited right dihedra constraint for ®tting stresses to
faults is applied. The presented approach separates
faults prior to stress inversion on the basis of their re-

sponse to all possible orientations and magnitudes of
applied stress. Final right-dihedra solutions are re-
computed to reduced stress tensors de®ned by the
orientation of principal stress axes and the ratio of
principal stress di�erence.

2. Existing methods for polyphase data sets

The development of geological structures is often a
complex process in which stresses varied through time.
In such cases, various stress states are recorded in
polyphase and reactivated fault systems. The tra-
ditional stress inversion approach (e.g. Etchecopar et
al., 1981; Armijo et al., 1982; Angelier, 1984; Gephart
and Forsyth, 1984; Michael, 1984; Galindo-Zaldivar
and Gonzales-Lodeiro, 1988; Gephart, 1990;
Hardcastle and Hills, 1991) involves the concept of the
best-®t stress tensor. This is the tensor which best
explains the striation data, by minimising the mis®t
between calculated and measured fault-striae orien-
tation. Testing of this approach using performance
sensitivity software written by Nemcok and Lisle
(1995) with various combinations of synthetic faults
shows that this approach is suitable only for mono-
phase data sets with few spurious measurements. It is
not suited to truly mixed data sets because in these cir-
cumstances the best-®t tensor risks being a statistical
artefact without structural signi®cance. Attempts to
improve the solution by a process of rejecting spurious
data to improve the best-®t tensor only increases the
risk of arti®cial results.

A similar drawback is associated with the estab-
lished procedures for polyphase calcite-twin data. The
methods of Laurent et al. (1981, 1990), Laurent (1984)
and Etchecopar (1984) ®nd the stress tensor that best
®ts the distribution of the twinned and the untwinned
planes measured in a sample. This procedure leads to
the stress tensor solution which accounts for the lar-
gest number of twinned planes and simultaneously cor-
responds to the smallest value of f:

f �
XN
j�1
�tsj ÿ ta 0 �, �1�

where ta 0 is the smallest resolved shear stress applied
on the twinned planes compatible with the tensor and
tsj, the resolved shear stress applied on the untwinned
planes, for which tsj > ta 0 . Inconsistent twin data are
withdrawn and either considered to be outliers suitable
only for rejection or the computing procedure is
repeated with them. In order to treat incompatible
twin sets which obscure any least square analysis (e.g.
Will and Powell, 1991), Laurent et al. (1990), for
example, reject up to 20% of incompatible twins rather

Fig. 1. Geometry of calcite e-twinning (after Burkhard, 1993). Equal

area projection indicates a position of the principal axes (c, a1, a2,

a3) of calcite and a selection of poles of important crystallographic

planes: twin plane poles e1, e2 and e3, glide direction g1, rhombohe-

dral plane pole r1 and prismatic plane pole m1. Optimum com-

pression C and tension T axes for twinning on e1 twin plane are

indicated. The section through C, e1, c, T, r1 and g1 in the equal

area projection is shown as the schematic representation of an e-twin

indicated in e1±g1 cross-section through host and twin. The section

shows the angular relationships between the major crystallographic

elements and the optimum compression C and tension T for twin-

ning on e1. Shear strain for an individual twin is g � tan 34:58 and c-

axis is at angle 268 from the e1.
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than utilise them for the determination of superposed
stress tensors.

In rocks that are polydeformed an approach that
separates faults prior to stress inversion is more appro-
priate. Several methods have been proposed (e.g.
Angelier and Manoussis, 1980; SimoÂ n-GoÂ mez, 1986;
Huang, 1988; Kleinspehn et al., 1989), but each of
them functions only in a very limited number of cases
(see the discussion in Nemcok and Lisle, 1995).

Nemcok and Lisle (1995) propose a way of separ-
ating fault-striae data, which involves the statistical
classi®cation by cluster analysis. The method can be

used on randomly oriented reactivated faults. Using a
modi®ed numeric method of Hardcastle and Hills
(1991), their method assigns to each fault a wide range
of potential stress tensors which could have created or
reactivated the fault. The faults are compared on the
basis of the tensors that succeed or fail to activate/
reactivate the fault. Cluster analysis is used to establish
degrees of similarity of the faults based on their re-
sponse to the multiple stress tensors. Separated fault
sets can be analysed by any inversion method for
monophase data.

The computer method that we present in this paper

Fig. 2. Three numerically generated calcite twin data sets I, II and III with (a) c-axes and (b) e1 twin planes indicated in equal area projection.

Sets I, II and III were used for calculation of the polyphase fault-striae data set in Table 1 (fault Nos. 1±23, 24±46 and 47±53). The sense of

twinning is indicated in Table 1.
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involves cluster analysis combined with the right-dihe-
dra method (Angelier and Mechler, 1977). The right-
dihedra method constrains the orientation of the prin-
cipal stresses in the cluster analysis. The use of the less
limited constraint of placing the stress axes in dihedra
(three-dimensional quadrants) permits slip to occur in
directions other than those of the maximum shear
stress. Thus, this approach accommodates calcite twin
data, but is also suitable for analysis of fault-striae
polyphase data. In the case of calcite twin data, the
method maps all probable stress states without a need
for using non-slip twin data, which is a requirement of
numeric stress inversion methods.

3. The new approach

Our method for stress analysis is performed in a
number of steps:

1. Each fault-striae measurement is assigned by a
right-dihedra graphical stress solution, a three-
dimensional representation of all potential stress
tensors that could activate/reactivate the fault.
Representative capable and non-capable stress ten-
sors are extracted from the right-dihedra.

2. A similarity coe�cients matrix is created to quantify
degrees of similarity of the faults based on their re-
sponse to multiple stress tensors.

3. Cluster analysis is used to group the faults based on
response to the multiple stress tensors.

Fig. 3. Experimentally generated calcite twin data set Buxy 00, pro-

vided by Laurent. e-Plane poles (circles) and c-axes within the

untwinned part of the crystal (end of arrows) are plotted in equal

area projection according to the method of Dietrich and Song (1984)

by software EC-PLOT of Sperner and Ratschbacher (1994). Glide

directions for the e-twins are indicated by arrows, which point away

from the maximum compressive stress s1.

Table 1

Fault-striae data 3mixtest ®le used for the method testing. FÐfault,

F. planeÐfault plane, Dip dirÐdip direction, TrÐtrend, PlÐ

plunge, Displ. senseÐdisplacement sense

F. No. F. plane Striae Displ. sense

Dip dir Dip Tr Pl

01 084 86 174 09 dextral

02 094 76 173 39 dextral

03 070 82 157 24 dextral

04 258 78 177 39 dextral

05 278 75 203 42 dextral

06 269 78 180 08 dextral

07 270 71 187 22 dextral

08 260 74 182 36 dextral

09 242 67 168 34 dextral

10 273 67 199 33 dextral

11 261 41 205 25 dextral

12 258 51 186 25 dextral

13 244 32 190 18 dextral

14 235 42 187 32 dextral

15 260 46 189 21 dextral

16 265 77 182 29 dextral

17 246 58 183 41 dextral

18 266 62 182 11 dextral

19 256 48 185 21 dextral

20 268 49 202 28 dextral

21 262 58 199 33 dextral

22 265 61 211 36 dextral

23 247 49 202 25 dextral

24 144 86 232 22 dextral

25 154 76 238 20 dextral

26 130 82 217 17 dextral

27 318 78 234 28 dextral

28 338 75 275 60 dextral

29 329 78 246 31 dextral

30 330 71 253 34 dextral

31 320 74 239 29 dextral

32 302 67 229 34 dextral

33 333 67 265 41 dextral

34 321 41 256 20 dextral

35 318 51 251 26 dextral

36 304 32 243 17 dextral

37 295 42 243 29 dextral

38 320 46 255 23 dextral

39 325 77 242 29 dextral

40 306 58 238 31 dextral

41 326 62 254 30 dextral

42 316 48 250 25 dextral

43 328 49 273 33 dextral

44 322 58 252 28 dextral

45 325 61 253 30 dextral

46 307 49 244 28 dextral

47 204 60 234 54 normal

48 206 60 196 59 normal

49 198 54 256 34 normal

50 209 63 258 48 normal

51 198 52 202 50 normal

52 350 40 054 17 normal

53 188 68 245 52 normal
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Table 2

Calcite twin data from experimentally deformed Jurassic limestone

from locality Buxy in Burgundy, France, provided by Laurent (per-

sonal communication, 1998). Triaxial deformation was made at

2008C. Most of the deformation (up to 10%) was achieved by twin-

ning on the e-planes. The limestone did not indicate any macroscopic

deformation. Thin sections indicate up to 0.5% of the twinning as a

result of the natural deformation (Laurent, 1998, personal communi-

cation). Applied stress, that created experimental twin data, had

principal directions s1 � 204=87, s2 � 317=01, s3 � 047=02, stress

ratio j � 0:07 (sensu Etchecopar et al., 1981) and s1±s3 magnitude

was equal to 173 MPa. cÐc-axes, eÐtwin planes, aÐangles between

c-axes and twin plane poles. The data are represented by the Turbo

Pascal software TWIN of Sperner and Ratschbacher (1994), using a

convention where U-stage contains the vertical N axis with zero in S

and clockwise counting, the horizontal north-trending H axis and

the horizontal east-trending axis. Whereas reading of N is indepen-

dent of the orientation of the measured axis or pole, the record of

the H and K axes is orientation-dependent. For c-axis or plane pole

parallel to the K-axis (i.e. horizontal E±W, K � 0), H values are

counted from the vertical towards the thin section plane with tilting

towards the W being positive and towards the E being negative. Due

to inaccuracies in U-stage handling, planes are identi®ed as e-twins

(a � 268) and used for later test-paleostress calculation for

168<a<358

c e1 a1 e2 a2 e3 a3

N H K N H N H N H

318 35 0 306 8 27

268 62 0 283 76 20 274 35 27 240 70 27

33 88 0 7 89 26

232 75 0 259 66 27 208 61 26

263 82 0 237 79 26 91 73 26 282 64 26

313 61 0 159 44 79

178 82 0 160 60 28 347 72 28

66 76 0 231 72 35 53 62 18

172 60 0 193 40 25 143 62 25

186 87 0 346 73 28 180 60 28

156 22 0 111 37 26 179 43 24 262 9 26

260 85 0 286 76 27 75 69 26 239 69 26

270 86 0 249 70 26 85 68 26 295 78 26

199 38 0 172 56 26 192 11 27

47 63 0 18 49 28 79 60 28

342 57 0 308 42 30

145 68 0 130 46 25

147 48 0 181 53 27 118 28 26

126 81 0 143 58 28 98 83 28 319 76 26

319 89 0 297 75 26 137 65 26

47 59 0 15 40 30 78 56 26

218 73 0 192 63 26 244 61 27 39 81 26

7 89 0 346 72 27 181 65 27

101 75 0 84 52 27 129 78 27 268 83 25

274 85 0 250 73 26 95 69 26

343 90 0 2 73 25

80 56 0 113 50 27 48 44 27

342 79 0 315 73 27 168 76 26 3 61 27

34 79 0 199 78 27 20 54 28

262 78 0 283 60 27 236 72 26

192 57 0 161 51 26 220 43 25

190 53 0 159 43 25 222 44 25

164 82 0 10 90 27 325 79 27

319 75 0 291 77 27

29 73 0 55 61 27

(continued on next page)

Table 2 (continued )

c e1 a1 e2 a2 e3 a3

N H K N H N H N H

116 85 0 94 99 22

253 58 0 275 77 28 225 69 27 263 32 27

196 70 0 223 80 28 175 89 28

352 67 0 323 64 27 17 50 27

248 65 0 236 90 27 278 66 27

321 90 0 114 90 27

80 81 0 92 59 25

108 69 0 88 81 23

288 62 0 261 65 24 309 41 26

242 57 0 260 79 28 257 33 26

208 81 0 48 80 28 181 89 28

174 65 0 143 64 28 200 46 28

108 70 0 80 72 27

348 56 0 316 43 27 21 51 27

226 87 0 247 72 25

174 66 0 202 54 27

111 52 0 81 56 24

132 36 0 110 57 26 101 13 26

179 78 0 152 82 27 16 80 28

186 44 0 214 60 27 160 62 27 181 18 26

194 37 0 223 54 26 166 55 27 189 11 26

145 71 0 312 86 26

11 81 0 214 86 26 169 84 27 9 55 26

173 89 0 147 80 27 194 72 27

241 68 0 267 57 25

350 87 0 194 79 28 146 80 27

227 62 0 237 88 28

188 83 0 218 83 30

178 80 0 335 87 26 21 86 27

38 67 0 55 87 26

356 76 0 328 71 27 17 58 26

44 85 0 244 79 26 200 85 26

43 38 0 70 57 27 12 54 27 54 12 26

159 89 0 309 88 30

175 78 0 330 89 28 19 88 28

314 77 0 286 79 27

351 78 0 18 72 27 328 61 27

1 81 0 26 88 26 163 79 27

199 87 0 230 88 31

106 52 0 125 74 28 75 61 27 124 29 26

139 61 0 110 52 26 167 50 25 140 87 26

106 74 0 78 76 27

71 61 0 86 83 26

332 89 0 359 89 27 316 66 28 138 69 26

355 78 0 156 83 27 21 85 27

199 79 0 173 87 27 40 83 28

311 52 0 276 47 27 315 79 27 343 40 26

279 83 0 306 75 28

177 66 0 158 86 27 205 75 28

252 90 0 91 75 24

280 83 0 302 82 22 261 62 28

346 57 0 334 82 27 18 59 27

106 70 0 81 81 27 126 87 26 111 44 26

1 66 0 31 56 28 331 56 28

173 75 0 144 73 28 194 55 27

182 87 0 338 80 27 25 79 27

179 75 0 207 69 27 155 58 28

27 67 0 54 75 27 8 87 27

125 89 0 97 89 28

195 76 0 34 88 25

(continued on next page)
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4. Each resultant subset is tested by the composite
right-dihedra solution to establish whether the data
belong to a monophase solution. Polyphase sets are
divided into monophase subsets at the higher simi-
larity limit.

5. The composite right-dihedra solution of each mono-
phase fault-striae set is recalculated to the reduced
stress tensor de®ned by the orientations of principal
stress axes and the ratio of their magnitudes.

A detailed description of the procedures is described
below.

3.1. Input data

Our procedure requires that the calcite twin data
extracted from thin sections with a Universal-stage
(Figs. 2 and 3) have to be converted to the fault-striae
format, slip direction in a slip plane. This can be done
by plotting c-axis and e-plane with its normal on the
stereonet (Fig. 1). The slip vector is found by the inter-
section of the e-plane with the plane comprising c-axis
and e-plane normal. The sense is given by the twinning
sense or by the position of the c-axis in the extension
quadrant. Fault-striae measurements are coded nu-
merically for ease of later separation and comparison.
Each measurement is de®ned by the dip direction and

Table 2 (continued )

c e1 a1 e2 a2 e3 a3

N H K N H N H N H

266 41 0 246 62 26 297 53 25 242 17 26

170 90 0 140 89 30 183 67 26

96 46 0 101 73 27 58 44 27 133 34 26

31 80 0 228 80 26

167 60 0 136 59 27 192 42 26

50 54 0 85 52 28 42 80 27

33 43 0 354 42 26 38 69 26 72 31 26

205 59 0 236 51 26 175 47 27

215 46 0 226 66 22 181 50 25 247 28 26

155 41 0 114 43 27 164 67 27 195 27 26

146 70 0 169 82 25 126 86 25

178 71 0 15 87 28 150 77 28

3 61 0 331 62 28 15 86 27

70 72 0 98 74 27

122 88 0 96 89 26

235 62 0 241 88 27

179 67 0 150 70 27 193 90 26

72 47 0 56 70 27 106 54 27 46 25 26

302 41 0 283 63 26 275 18 26

198 79 0 217 60 26 172 76 26

347 55 0 315 48 26 19 44 26

194 73 0 167 79 27 30 86 26

324 84 0 122 82 26 167 83 26

186 81 0 158 83 28 22 76 28 199 58 26

33 85 0 234 81 25 191 83 25

351 89 0 140 90 31

Table 3

Fault-striae data recalculated from calcite twin data from location

Buxy (Table 2). DDrÐdip direction, DpÐdip, TrÐtrend, PlÐ

plunge. RelationÐrelationship indicates related twin planes (twin set

1, 2, 3Ðplanes e1, e2, e3)

Fault Striation Relation

DDr Dp Tr Pl Sen

324 8 309 8 ÿ1

347 76 271 46 +1 twin set 1

356 35 10 35 ÿ1 twin set 2

30 70 112 21 +1 twin set 3

263 89 353 3 +1

11 66 95 13 ÿ1 twin set 1

62 61 346 24 ÿ1 twin set 2

33 79 304 4 ÿ1 twin set 1

179 73 228 65 ÿ1 twin set 2

348 64 56 36 ÿ1 twin set 3

110 60 50 41 ÿ1 twin set 1

283 72 228 61 ÿ1 twin set 2

217 62 153 40 ÿ1

77 40 131 27 ÿ1 twin set 1

127 62 211 10 +1 twin set 2

284 73 209 41 ÿ1 twin set 1

90 60 65 57 ÿ1 twin set 2

159 37 203 29 +1 twin set 1

91 43 63 39 +1 twin set 2

8 9 312 5 +1 twin set 3

344 76 70 16 ÿ1 twin set 1

195 69 165 67 ÿ1 twin set 2

31 69 315 33 ÿ1 twin set 3

21 70 305 33 ÿ1 twin set 1

185 68 157 66 ÿ1 twin set 2

335 78 62 15 ÿ1 twin set 3

98 56 153 40 +1 twin set 1

78 11 68 11 ÿ1 twin set 2

252 49 177 16 ÿ1 twin set 1

191 60 102 2 +1 twin set 2

322 42 246 12 ÿ1

140 46 95 37 ÿ1

89 53 12 17 +1 twin set 1

152 28 94 16 ÿ1 twin set 2

127 58 183 42 ÿ1 twin set 1

172 83 261 6 +1 twin set 2

311 76 19 57 ÿ1 twin set 3

333 75 252 30 ÿ1 twin set 1

133 65 122 65 ÿ1 twin set 2

255 40 186 17 ÿ1 twin set 1

192 56 103 2 +1 twin set 2

78 63 356 15 ÿ1 twin set 1

26 61 105 18 ÿ1 twin set 2

231 81 245 81 ÿ1 twin set 3

284 72 208 35 ÿ1 twin set 1

89 65 60 61 ÿ1 twin set 2

186 52 134 39 ÿ1 twin set 1

141 78 53 9 +1 twin set 2

2 83 283 59 ÿ1 twin set 3

20 73 297 23 ÿ1 twin set 1

175 69 181 69 ÿ1 twin set 2

268 73 344 38 ÿ1

157 50 245 2 ÿ1 twin set 1

222 44 143 10 ÿ1 twin set 2

315 73 228 9 ÿ1 twin set 1

(continued on next page)
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Table 3 (continued )

Fault Striation Relation

DDr Dp Tr Pl Sen

102 76 147 70 ÿ1 twin set 2

267 61 336 33 ÿ1 twin set 3

71 78 358 55 ÿ1 twin set 1

250 54 205 44 ÿ1 twin set 2

347 60 55 32 ÿ1 twin set 1

34 72 307 9 ÿ1 twin set 2

109 51 22 3 ÿ1 twin set 1

50 43 123 16 ÿ1 twin set 2

111 43 30 8 ÿ1 twin set 1

48 44 132 7 ÿ1 twin set 2

260 89 350 20 ÿ1 twin set 1

305 79 226 43 ÿ1 twin set 2

339 77 67 7 +1

215 61 294 18 ÿ1

176 89 265 11 +1

355 77 278 45 +1 twin set 1

45 69 123 27 +1 twin set 2

7 32 29 30 ÿ1 twin set 3

47 80 321 24 +1 twin set 1

95 89 184 44 +1 twin set 2

307 64 38 1 +1 twin set 1

253 50 322 24 ÿ1 twin set 2

34 89 123 65 +1 twin set 1

352 66 266 8 +1 twin set 2

156 89 66 2 ÿ1

178 59 225 48 ÿ1

182 81 266 34 +1

9 65 93 12 +1 twin set 1

321 41 14 28 ÿ1 twin set 2

10 79 295 55 +1 twin set 1

13 33 47 28 ÿ1 twin set 2

222 80 302 42 ÿ1 twin set 1

89 89 179 17 +1 twin set 2

127 64 215 4 +1 twin set 1

70 46 136 24 ÿ1 twin set 2

190 72 278 9 +1

314 43 236 12 ÿ1 twin set 1

249 51 339 1 ÿ1 twin set 2

23 72 102 32 ÿ1

68 54 147 15 ÿ1

189 56 268 15 +1

160 57 207 46 +1 twin set 1

169 13 124 9 ÿ1 twin set 2

118 82 207 11 +1 twin set 1

254 80 331 51 ÿ1 twin set 2

56 60 352 37 +1 twin set 1

110 62 172 41 +1 twin set 2

89 18 81 18 ÿ1 twin set 3

47 54 352 37 +1 twin set 1

104 55 159 40 +1 twin set 2

81 11 74 11 ÿ1 twin set 3

318 86 235 61 ÿ1

56 86 144 30 ÿ1 twin set 1

101 84 16 34 ÿ1 twin set 2

261 55 253 55 ÿ1 twin set 3

123 80 36 17 ÿ1 twin set 1

76 72 152 35 ÿ1 twin set 2

3 57 83 16 ÿ1

76 79 160 28 ÿ1 twin set 1

124 80 39 27 ÿ1 twin set 2

(continued on next page)

Table 3 (continued )

Fault Striation Relation

DDr Dp Tr Pl Sen

33 88 308 71 +1

52 83 322 2 +1

295 87 206 30 ÿ1 twin set 1

249 86 336 31 ÿ1 twin set 2

215 87 129 52 +1

302 71 214 6 ÿ1 twin set 1

253 58 321 32 ÿ1 twin set 2

26 79 107 37 ÿ1 twin set 1

70 85 342 22 ÿ1 twin set 2

200 57 145 41 +1 twin set 1

258 54 317 35 +1 twin set 2

216 12 232 12 ÿ1 twin set 3

321 88 231 5 ÿ1

300 89 211 28 ÿ1 twin set 1

251 88 339 31 ÿ1 twin set 2

344 79 72 7 +1

252 72 339 9 ÿ1 twin set 1

302 61 230 29 ÿ1 twin set 2

244 88 154 17 +1 twin set 1

107 79 29 46 ÿ1 twin set 2

40 88 310 2 +1

145 74 77 53 +1 twin set 1

195 61 271 24 +1 twin set 2

146 29 184 23 ÿ1 twin set 3

160 52 78 9 ÿ1 twin set 1

103 50 182 13 ÿ1 twin set 2

130 87 97 86 +1 twin set 3

192 76 280 8 +1

184 83 106 58 +1

271 89 181 1 +1 twin set 1

314 66 253 47 ÿ1 twin set 2

132 69 70 51 ÿ1 twin set 3

114 83 31 45 ÿ1 twin set 1

249 85 160 17 +1 twin set 2

97 87 186 19 +1 twin set 1

230 83 314 40 ÿ1 twin set 2

354 47 83 1 +1 twin set 1

315 79 283 77 +1 twin set 2

287 40 5 10 ÿ1 twin set 3

324 75 50 13 ÿ1

112 86 197 49 +1 twin set 1

65 75 341 22 +1 twin set 2

179 75 258 35 ÿ1

328 82 58 1 ÿ1 twin set 1

9 62 305 39 ÿ1 twin set 2

296 82 6 66 +1 twin set 1

252 59 169 11 +1 twin set 2

189 81 275 27 +1 twin set 1

144 87 57 43 +1 twin set 2

159 44 174 43 ÿ1 twin set 3

239 56 322 11 ÿ1 twin set 1

299 56 216 11 ÿ1 twin set 2

126 73 216 1 +1 twin set 1

76 55 140 33 ÿ1 twin set 2

292 80 207 27 ÿ1 twin set 1

245 79 328 30 ÿ1 twin set 2

63 69 150 8 ÿ1 twin set 1

115 58 44 27 ÿ1 twin set 2

216 75 132 21 +1 twin set 1

262 87 348 49 +1 twin set 2

(continued on next page)
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magnitude of dip of the fault, azimuth and plunge of
the striation (slip vector) and the displacement sense
(see Tables 1 and 3).

3.2. Fault-striae datum characteristic variables

The graphical right-dihedra stress construction is
made for each fault (Fig. 4). The stereographic pro-
cedure consists plotting the fault plane. Then line B
perpendicular to the striation vector is determined
within the fault plane. The conjugate nodal plane
going through the fault plane normal and line B is
constructed. The sphere is divided into two com-
pression and two extension dihedras, which are dis-
played in a stereonet following Angelier and Mechler
(1977). The solution is sampled on a dense grid to
obtain binary dynamic attributes. Compression dihe-
dra generate capable stress tensors; extensional dihedra
generate non-capable stress tensors. In this way each
fault is characterised by a string of variables referring
to its compatibility (capable or non-capable) with the
grid (Table 4a). The right-dihedra construction itself
indicates the dichotomy of stress states, which are
capable and incapable of causing observed twinning
(faulting). That is why no special right-dihedra con-
structions are made for untwinned e-planes. Such a
construction would result in a much broader map of
incompatible stress states, obscuring the subsequent
cluster analysis.

3.3. Similarity coe�cients matrix

When each fault is characterised by the string of
variables, all possible fault pairs are matched (Table
4b). The similarity between fault i and fault j is deter-
mined from the comparison of their variables. The
most commonly used simple matching coe�cient Sij

assigns the same weight on aij and dij, following
Everitt (1980):

Sij � �aij � dij �=n, �2�

where aij is the number of grid nodes where compres-
sional right-dihedra solutions of both faults overlap, dij
is the number of grid nodes which are not overlapped
by either of both compressional right-dihedra solutions
and n is the number of grid nodes.

The quantities aij and dij are descriptors of fault clo-
seness that have the equal weight, i.e. failing to ®t has
equal value to ®tting. The similarity coe�cient Sij var-
ies from 0 (completely unrelated faults) to 1 (comple-
tely similar faults).

The similarity coe�cients of fault pairs a�ect the
later fault separation into dynamically-homogeneous
subsets (Table 4b; Fig. 5).

Table 3 (continued )

Fault Striation Relation

DDr Dp Tr Pl Sen

173 89 263 1 +1

236 88 324 41 ÿ1

24 62 76 49 +1 twin set 1

333 53 269 29 +1 twin set 2

28 17 350 14 ÿ1 twin set 3

130 89 40 2 ÿ1 twin set 1

87 67 144 53 ÿ1 twin set 2

169 73 144 71 +1 twin set 1

212 44 295 7 +1 twin set 2

137 34 218 7 ÿ1 twin set 3

42 80 121 48 ÿ1

134 59 221 5 +1 twin set 1

78 42 141 22 ÿ1 twin set 2

185 52 99 5 +1 twin set 1

228 80 284 73 +1 twin set 2

276 42 357 8 +1 twin set 1

232 69 212 67 +1 twin set 2

198 31 279 5 ÿ1 twin set 3

34 51 119 7 ÿ1 twin set 1

95 47 17 12 ÿ1 twin set 2

44 66 360 58 +1 twin set 1

89 50 165 15 +1 twin set 2

23 28 87 13 ÿ1 twin set 3

156 43 231 13 +1 twin set 1

106 67 75 64 +1 twin set 2

75 27 152 6 ÿ1 twin set 3

101 82 16 30 +1 twin set 1

144 86 230 41 +1 twin set 2

255 87 340 53 ÿ1 twin set 1

120 77 207 16 +1 twin set 2

299 62 24 9 +1 twin set 1

255 86 175 66 +1 twin set 2

172 74 84 8 +1

174 89 264 3 +1

29 88 307 78 +1

120 70 206 11 +1 twin set 1

77 89 348 59 +1 twin set 2

214 70 270 57 +1 twin set 1

164 54 90 20 +1 twin set 2

224 25 175 17 ÿ1 twin set 3

347 63 37 51 +1 twin set 1

355 18 311 13 ÿ1 twin set 2

53 60 118 36 ÿ1 twin set 1

98 76 9 4 ÿ1 twin set 2

315 48 229 4 ÿ1 twin set 1

251 44 332 9 ÿ1 twin set 2

103 79 190 16 +1 twin set 1

240 86 325 53 ÿ1 twin set 2

148 82 63 32 ÿ1 twin set 1

103 83 190 29 ÿ1 twin set 2

112 83 201 6 +1 twin set 1

248 76 319 52 ÿ1 twin set 2

71 58 119 47 ÿ1 twin set 3

36 81 120 33 ÿ1 twin set 1

79 83 353 28 ÿ1 twin set 2

130 89 40 4 ÿ1
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Fig. 4. Assignment of descriptive attributes to highlighted fault No. 49 on the basis of the right-dihedra solution (focal mechanism) matched

against the grid. The fault-striae datum comprises dip direction and dip of the fault plane, trend and plunge of the striae and indication of the

displacement (nÐnormal fault, sÐsinistral strike-slip fault). The fault is given a string of binary attributes used for the later comparison of faults

(Table 4a). +: grid point ®ts the compression dihedra projection. ÿ: grid point does not ®t the compression dihedra solution. Striation plunge

correction (Plunge) of the ®eld measurement mistake, in the case when measured striation does not lie on a great circle of the measured fault

plane, is shown in the lower left corner. NÐfault plane normal, SÐstriation, BÐvector perpendicular to the striation vector and lying in the

fault plane. Figure shows the snap shot of the software TWING after the separation of the data set III from 3mixtest ®le (Table 1).

Table 4

(a) De®ning binary dynamic attributes to each fault on the basis of the correlation of the compression dihedra with grid nodes. The string of

binary attributes assigned to each fault is later used for the similarity coe�cient computation. (b) Fault pairs characterised by their similarity

coe�cient Sij calculated from and aij, dij and n [Eq. (2)]; where aij is the number of common grid squares where right-dihedra solutions of both

faults overlap, dij is the number of common grid squares which are not overlapped by either of both right-dihedra solutions and n is the number

of grid squares

Square 1 Square 2 Square 3 Square 4 Square 5 Square 6 Square 7

(a)

Fault 1 + ÿ + + ÿ ÿ ÿ
Fault 2 + + + + ÿ ÿ +

Fault 3 ÿ ÿ + ÿ + + +

Fault 4 ÿ ÿ ÿ ÿ + + +

(b)

Fault pair 1&2 a12=3 d12=2 n=7 Sij=0.6100

Fault pair 1&3 a13=1 d13=1 n=7 Sij=0.1700

Fault pair 1&4 a14=0 d14=1 n=7 Sij=0.0066

Fault pair 2&3 etc.
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3.4. Clustering and separation

A hierarchical clustering, speci®cally the agglomera-

tive technique of cluster analysis called the single link

method was chosen from the variety of available

methods (see Everitt, 1980). It begins with the simi-

larity matrix between the entities and ends with a den-

drogram showing the successive fusions of individuals

that results in the stage in which all individuals are

grouped. At each stage the method unites individuals

according to the distance between their nearest mem-

bers. The distance between groups is de®ned as the dis-

tance between their closest members. Readers

interested in detailed discussion of the single link clus-

tering are referred to Everitt (1980).

Fig. 5 shows the sequence of fusion of our data

from Table 1 governed by the ranked similarity coe�-

cients from their similarity matrix. The sequence of

fusions is recorded graphically in the dendrogram. The

®rst-order branches of the tree indicate the member-

ship of the dominant fault subsets (Fig. 5). Each mer-

ger point in the dendrogram is the point of optional

data separation. Thus, the ®rst-order branches can be

separated into fault-striae subsets, e.g. a subset in Fig.

4. In as much as the sequence of mergers ends in a

merger of all data, the separation has to be made

downward until a further separation of outliers from

the ®rst-order branches does not result in a di�erent
calculated stress solution.

3.5. Composite right-dihedra solution

The composite right-dihedra solution is constructed
for each separated fault-striae subset. The solution
either yields the principal stresses for the monophase
subset or indicates that a subset is not monophase.

The graphical right-dihedra stress solution is deter-
mined for each fault of a subset (Fig. 4). All solutions
are overlaid and matched against a grid. Each grid
node counts the amount of overlaps with compression
dihedras of each solution projected on the stereonet.
The result is a contour map of the stereonet (Figs. 6
and 7). Areas with 0 value indicate the solution for the
minimum compressive stress s3 distribution. Areas
with maximum value, equal to the amount of faults in
the data set, indicate the solution for the maximum
compressive stress s1 distribution. The composite
right-dihedra solution forms a control of the separ-
ation for the fault-striae data. When the number of the
overlays in the contoured maximum is less than the
total number of the faults in the data set, the separated
data set is not a dynamically-homogeneous fault set.
In this case the screening process has to be repeated
and a separation has to be made at a higher similarity
coe�cient Sij level.

Fig. 5. Fault separation of the data set 3mixtest from Table 1. The fault groupings in the dendrogram are made by cluster analysis. Three ®rst-

order branches are related to data sets I, II and III (Fig. 2) mixed in a 3mixtest ®le (Table 1). Note that due to the less limiting constraints

imposed by the right-dihedra solution, because of its design for the disperse calcite twin data, the separation cuts deeper inside the three mono-

phase data sets. It results in separated data sets I and III missing faults Nos. 3 and 4 and No. 48, respectively.
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This constraint can fail in the case of the natural
calcite twin data, which display a broad range of

orientations (Figs. 6 and 7). In such a case, the separ-
ation has to be made downward until subsets result in
similar stress solutions. An example of how the natural

twin data scatter a�ects the resulting stress calculation
is best shown in the case of the experimentally made
data set Buxy 00 provided by Laurent (Tables 2 and

3). The estimated amount of outliers (twins made prior
to experiment) is 0.5% (Laurent, 1998, personal com-
munication). However, the minimum (5) and maxi-

mum (152) values in Fig. 6(a) indicate that the number
of `outliers' is larger, i.e. formed by real outliers plus
data belonging to the data set.

When the initial test indicates that the separated

cluster forms the dynamically-homogeneous fault-striae
set, i.e. the fault population controlled by the single
stress event, the ratio of the stress magnitudes is calcu-

lated. At the start of this calculation, each grid node
on the stereonet is de®ned by the unit vector oriented
from the centre towards the node, de®ned by its direc-

tional cosines (l, m, n ). The number of overlays
counted by grid node is used to multiply the length of
the unit vector, i.e. the amount of overlaps de®nes the

number of identically oriented vectors. Thus, the con-
toured composite right-dihedra solution was trans-
formed to the set of vectors of various lengths, all
starting in the centre of the sphere represented by the
stereonet. The orientation matrix of this vector set is
calculated following Scheidegger (1965):

A �
24Sl2i Slimi Slini
Slimi Sm2

i Smini
Slini Smini Sn2i

35 �3�

The shape of the ellipsoid representing this orientation
tensor is de®ned by the eigenvalues (P®�ner and
Burkhard, 1987; Wallbrecher and Fritz, 1989;
Wallbrecher et al., 1996) d1, d2 and d3, where
d1rd2rd3. Thus their ratio R represents the ratio of
magnitudes of the principal stresses:

R � �d2 ÿ d3�=�d1 ÿ d3� �4�

that varies between 0 and 1.
When the stress ratio is calculated, the areas of

minimum and maximum are separated from the com-
posite right-dihedra solution. As with the case of the
composite solution, each grid node of the right-dihedra

Fig. 6. Attempts to reproduce the stress state used by Laurent (Table 5) when he created the experimental calcite twin data set Buxy 00 (Tables 2

and 3) by our software TWING. The graphical output of the calculation is shown for: (a) the whole Buxy 00 data set; (b) the ®rst 200 faults of

the Buxy 00 data set; (c) the ®rst 150 faults of the Buxy 00 data set; (d) the ®rst 100 faults of the Buxy 00 data set; (e) the Buxy 30 data set=®rst

100 faults of the Buxy 00 data set rotated 308; (f) the Buxy 60 data set=®rst 100 faults of the Buxy 00 data set rotated 608. Trend/plunge of the

rotation axis is 114/00. Calculated orientations of principal stress axes (trend/plunge) and their stress ratio are: (a) 193/71, 344/17, 077/09, 0.231;

(b) 183/80, 323/08, 054/07, 0.204; (c) 189/77, 326/10, 057/08, 0.190; (d) 061/83, 325/01, 235/07, 0.075; (e) 035/66, 138/06, 230/23, 0.110; (f) 033/31,

131/13, 241/55, 0.265. Note that the reduction of the data (diagrams b, c, d) did not a�ect the resulting stress and that all results are similar to

real stresses (Table 5).
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Fig. 7. Examples of separation results from data sets Buxy 00-30mix, Buxy 00-60mix and Buxy 00-90mix (®les contain a mixture of the ®rst 100

faults of the Buxy 00 data set with the same data set, but rotated about an indicated amount). Diagrams show the composite right-dihedra sol-

utions calculated from subsets separated from: (a, b) Buxy 00-30mix; (c, d, e) Buxy 00-60mix; and (f) Buxy 00-90mix. Calculated orientations of

principal stress axes (trend/plunge) and their stress ratio are: (a) 062/76, 316/00, 225/13, 0.107; (b) 060/63, 322/04, 230/27, 0.207; (c) 054/71, 321/

01, 231/19, 0.094; (d) 019/55, 139/19, 240/28, 0.168; (e) 038/50, 140/10, 238/39, 0.216; (f) 193/72, 326/11, 058/13, 0.074. (a±c, e and f) Final results

of the separation. (d) and (e) Second last and last step downward in the dendrogram during the separation. Note, that all ®nal results are similar

to real stresses listed in (Table 5).

Table 5

Stresses related to ®les with experimental calcite twin data. File Buxy

00 is the original data set made by Laurent (Table 2) under the stress

described here. Data ®les Buxy 30, 60 and 90 were made by rotation.

The trend/plunge of the rotation axis is 114/0. Angles of rotation are

308, 608 and 908. Stresses related to ®les Buxy 30, 60 and 90 were

determined by the same rotation

File s1 (trend/plunge) s2 (trend/plunge) s3 (trend/plunge) R

Buxy 00 204/87 317/01 047/00 0.07

Buxy 30 024/63 135/10 230/27 0.07

Buxy 60 024/33 127/19 244/53 0.07

Buxy 90 024/03 115/23 294/67 0.07

is de®ned by the unit vector starting in the centre of
the sphere represented by the stereonet. The geometry
of this con®guration is formed by two `cones' of vec-
tors de®ned by (lxi, mxi, nxi) in the case of the maxi-
mum (compression) and by (lzi, mzi, nzi) in the case of
minimum (extension). The orientation matrix of this
vector set is calculated by the approach for two
mutually perpendicular sets, following Lisle (1989):

A �
24 S�l2xi ÿ l2zi � S�lximxi ÿ lzimzi � S�lxinxi ÿ lzinzi �
S�mxilxi ÿmzilzi � S�m2

xi ÿm2
zi � S�mxinxi ÿmzinzi �

S�nxilxi ÿ nzilzi � S�nximxi ÿ nzimzi � S�n2xi ÿ n2zi �

35 �5�

The orientations of the principal stress axes are given
by the eigenvectors. The stress inversion from the sep-
arated dynamically-homogeneous fault set is ®nished
by the recalculation of direction cosines of the stress
axes to the trend/plunge format (Figs. 6 and 7).

4. Method testing

The method is tested by three dynamically mixed
fault-striae data sets, 3mixtest (Table 1), made from
synthetic calcite twin data (Fig. 2) generated by a
simple algorithm. It is also tested by several ®les with
two dynamically mixed fault-striae data sets, Buxy 00-
30mix, Buxy 00-60mix and Buxy 00-90mix, which were
compiled from twin data generated experimentally by
Laurent (Fig. 3; Tables 2 and 3). Data sets from Table
1 are generated numerically to gain the 100% control
on dynamically mixed sets, their stress states and the
success of their separation. The data set from Tables 2
and 3 is generated from rock mechanics experiments
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(Laurent, 1998, personal communication). A presence
of the twin data prior to this experiment (0.05%) and
the natural twin data scatter make the control slightly
less precise. As discussed by Nemcok and Lisle (1995),
the mixing of natural calcite twin data would not pro-
vide a reliable check of the separation method.

Fig. 5 shows the dendrogram made by the cluster
analysis of the 3mixtest data from Table 1. The separ-
ated subsets at the level 0.8 of the similarity coe�cient
Sij are dynamically homogeneous; the ®rst discarding
faults Nos. 2 and 3, the second one removing none
and the third one removing the fault No. 48. In spite
of the minimal rejection of faults from homogeneous
subsets, driven by the higher degree of freedom given
by the probability properties of the right-dihedra sol-
ution in comparison with the method of Nemcok and
Lisle (1995), the separation technique was capable of
correct de®nition of dynamically homogeneous subsets.
None of the resultant subsets is contaminated by mem-
bers of the other subsets. The subsets are dynamically
homogeneous and suitable for the monophase stress
inversion.

Testing based on the experimentally derived data set
Buxy 00 (Tables 2 and 3; Fig. 3) was more complex.
Compiled data sets which were used in dynamically-
mixed tests (Buxy 00-30mix, Buxy 00-60mix, Buxy 00-
90mix ) were obtained by incremental rotation of Buxy
00 and its addition to original Buxy 00. The trend and
plunge of the rotation axis were 1148 and 08, respect-
ively, angle of rotation was 308, 608 and 908. The stress
state used for the experiment (Laurent, 1998, personal
communication) and rotated stress states related to
Buxy 30, Buxy 60 and Buxy 90 are listed in Table 5.
The ®rst test runs indicated that the natural scatter of
the twin data does not have any in¯uence on the calcu-
lated stress state (Fig. 6a±d). The rotation of data did
not a�ect the calculated stress state (Fig. 6e and f).
Separation tests indicate that resulting stress states
determined for separated subsets ®t the real stress
states (Fig. 7; Table 5).

Separation tests indicate that the calcite twin data
have to be treated di�erently from fault-striae data. In
the case of the dynamically-mixed fault-striae data, the
separation is realised when the composite right-dihedra
solution results in the 0% data overlap area inside the
extensional dihedra and the 100% data overlap area
inside the compressional dihedra. This is a requirement
that the subset is dynamically-homogeneous. In the
case of the dynamically-mixed calcite twin data, the
separation is realised when further separation down-
ward in the dendrogram does not result in a distinct
change in the calculated stress state.

The success of the separation depends, in general,
on the di�erence between the right-dihedra solutions
of the samples and the density of the matching grid
nodes. In spite of the minimal rejection of faults from

homogeneous subsets, driven by the higher degree of
freedom given by the probability properties of the
right-dihedra solution, the separation technique is
capable of correct de®nition of dynamically homo-
geneous subsets. None of the resultant subsets is con-
taminated by members of the other subsets.

5. Conclusions

The proposed method pre-processes calcite twin and
fault data to group them on the basis of their response
to all possible orientations and magnitudes of applied
stress. It appears that the method bypasses the gener-
ation of spurious average stress solutions caused by
the search for the best-®t stress tensor that in turn in-
¯uences the data separation into coherent dynamically
homogeneous subsets.

Our method describes each fault by a string of vari-
ables, which is derived from the right-dihedra solution.
These variables are dynamic attributes relating this
fault to the compatible and incompatible stress tensors.
Dynamic attributes are used in a calculation of the
similarity coe�cient matrix which quanti®es degrees of
similarity of the faults based on their response to mul-
tiple stress tensors.

The applied agglomerative cluster technique proved
to be e�cient in the successful separation of dynami-
cally-homogeneous subsets by comparing the similarity
coe�cients of all fault pair combinations.

The suggested technique is not limited by any
imposed constraint in its search for the homogeneous
subsets. The utilised right-dihedra core of the method
allows a less limited freedom in the search for fault
similarities than the fully numerical method of
Nemcok and Lisle (1995). This makes the method es-
pecially suitable for the analysis of the calcite twin
data, but also keeps it suitable for the fault-striae data.
The ®nal right-dihedra solution is recalculated into
reduced stress tensor.

The method is programmed in C++ language soft-
ware for Windows 95, 98 and Windows NT.
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